Publications

List of papers with results from the "Quasar main sequence" project.

The relationship between Mg II broad emission and quasar inclination angle

Authors: Wildy, Conor; Czerny, Bozena; Panda, Swayamtrupta

Journal: Frontiers in Astronomy & Space Sciences, in press

Several observed spectral properties of quasars are believed to be influenced by quasar orientation. In this investigation we examine the effect of orientation on the Mg II line located at 2798 {\AA} in a sample of 36 radio-loud quasars, with orientation angles having been obtained in a previous study using radio observations. We find no significant relationship between orientation angle and either Mg II line full-width at half-maximum or equivalent width. The lack of correlation with inclination angle contradicts previous studies which also use radio data as a proxy for inclination angle and suggests the Mg II emission region does not occupy a disk-like geometry. The lack of correlation with Mg II equivalent width, however, is reported in at least one previous study. Although the significance is not very strong (86 percent), there is a possible negative relationship between inclination angle and Fe II strength which, if true, could explain the Fe II anti-correlation with [O III ] strength associated with Eigenvector 1. Interestingly, there are objects having almost edge-on inclinations while still exhibiting broad lines. This could be explained by a torus which is either clumpy (allowing sight lines to the central engine) or mis-aligned with the accretion disk.

Full paper: http://arxiv.org/abs/1710.10180


The physical driver of the optical Eigenvector 1 in Quasar Main Sequence

Authors: Panda, Swayamtrupta; Czerny, Bozena; Wildy, Conor

Journal: Frontiers in Astronomy & Space Sciences, in press

Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. However, Boroson & Green (1992) used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the FeII optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram (Sulentic et al. 2001). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the FeII to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical FeII for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and FeII emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of FeII but our computations show that the FeII to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.

Full paper: http://arxiv.org/abs/1710.10180


On the Intermediate Line Region in AGNs

Authors: Adhikari, Tek P.; Różańska, Agata; Hryniewicz, Krzysztof; Czerny, Bozena; Ferland, Gary J.

Journal: Frontiers in Astronomy & Space Sciences, 4, 19 (2017)

In this paper we explore the intermediate line region (ILR) by using the photoionisation simulations of the gas clouds present at different radial distances from the center, corresponding to the locations from BLR out to NLR in four types of AGNs. We let for the presence of dust whenever conditions allow for dust existence. All spectral shapes are taken from the recent multi-wavelength campaigns. The cloud density decreases with distance as a power law. We found that the slope of the power law density profile does not affect the line emissivity radial profiles of major emission lines: Hβ, He II, Mg II, C III] and [O III]. When the density of the cloud at the sublimation radius is as high as 1011.5 cm−3, the ILR should clearly be seen in the observations independently of the shape of the illuminating radiation. Moreover, our result is valid for low ionization nuclear emission regions of active galaxies.

Full paper: http://arxiv.org/abs/1709.07393


Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution

Authors: Czerny, B.; Li, Yan-Rong; Hryniewicz, K.; Panda, S.; Wildy, C.; Sniegowska, M.; Wang, J.-M.; Sredzinska, J.; Karas, V.

Journal: The Astrophysical Journal, 846, 154 (2017)

The physical origin of the Broad Line Region in Active Galactic Nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved and the reverberation mapping results imply complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts cause the dust evaporation and a subsequent fall back. This failed radiatively accelerated dusty outflow (FRADO) is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations describing the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters: black hole mass, accretion rate, black hole spin and the viewing angle. We study how the spectral line generic profiles correspond to this dynamics. We show that the virial factor calculated from our model strongly depends on the black hole mass in case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudo-bulges differs from that obtained from objects with classical bulges although the trend predicted by the current version of the model is opposite to the observed trend.

Full paper: http://arxiv.org/abs/1706.07958

Self-consistent dynamical model of the Broad Line Region

Authors: Czerny, Bozena; Li, Yan-Rong; Sredzinska, Justyna; Hryniewicz, Krzysztof; Panda, Swayam; Wildy, Conor; Karas, Vladimir

Journal: Frontiers in Astronomy & Space Sciences, 4, 5 (2017)

We develope a self-consistent description of the Broad Line Region based on the concept of the failed wind powered by the radiation pressure acting on dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaportes, and the matter falls back towards the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, just the gravitational field of the central black hole, which results in assymetry between the rise and fall. Knowledge of the dynamics allows to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

Full paper: http://arxiv.org/abs/1705.08812


SALT long-slit spectroscopy of HE 0435-4312: fast displacement in the Mg II emission line

Authors: Sredzinska, J.; Czerny, B.; Hryniewicz, K.; Krupa, M.; Marziani, P.; Adhikari, T. P.; Basak, R.; You, B.; Bilicki, M.

Journal: Astronomy & Astrophysics, 601, A32 (2017)

The Mg II emission line is visible in the optical band for intermediate redshift quasars (0.4 < z < 1.6) and it is thus an extremely important tool to measure the black hole mass and to understand the structure of the Broad Line Region. We aim to determine the substructure and the variability of the Mg II line with the aim to identify which part of the line comes from a medium in Keplerian motion. Using the Southern African Large Telescope (SALT) with the Robert Stobie Spectrograph (RSS) we performed ten spectroscopic observations of quasar HE 0435-4312 (z = 1.2231) over a period of three years (Dec 23/24, 2012 to Dec 7/8, 2015). Both the Mg II line and the Fe II pseudo-continuum increase with time. We clearly detect the systematic shift of the Mg II line with respect to the Fe II over the years, corresponding to the acceleration of 104 pm 14 km/s/year in the quasar rest frame. The Mg II line shape is clearly non-Gaussian but single-component, and the increase in line equivalent width and line shift is not accompanied with significant evolution of the line shape. We analyse the conditions in the Mg II and Fe II formation region and we note that the very large difference in the covering factor and the turbulent velocity also support the conclusion that the two regions are spatially separated. The measured acceleration of the line systematic shift is too large to connect it with the orbital motion at a distance of the Broad Line Region (BLR) in this source. It may imply a precessing inner disk illuminating the BLR. Further monitoring is still needed to better constrain the variability mechanism.

Full paper: http://arxiv.org/abs/1602.01975

The properties of active galaxies at the extreme of eigenvector 1

Authors: Sniegowska, M.; Czerny, B.; You, B.; Panda, S.; Wang, J.-M.; Hryniewicz, K.; Wildy, C.

Journal: Astronomy & Astrophysics (złożone do druku)

???

Full paper: http://arxiv.org/abs/1701.03694

A Test of the Formation Mechanism of the Broad Line Region in Active Galactic Nuclei

Authors: Czerny, B.; Du, Pu; Wang, Jian-Min; Karas, Vladimir

Journal: The Astrophysical Journal, 832, A15 (2016)

The origin of the Broad Line Region (BLR) in active galaxies remains unknown. It seems to be related to the underlying accretion disk but an efficient mechanism is required to rise the material from the disk surface without giving too strong signatures of the outflow in the case of the low ionization lines. We discuss in detail two proposed mechanisms: (i) radiation pressure acting on dust in the disk atmosphere creating a failed wind (ii) the gravitational instability of the underlying disk. We compare the predicted location of the inner radius of the BLR in those two scenarios with the observed position obtained from the reverberation studies of several active galaxies. The failed dusty outflow model well represents the observational data while the predictions of the self-gravitational instability are not consistent with observations. The issue remains why actually we do not see any imprints of the underlying disk instability in the BLR properties.

Full paper: http://arxiv.org/abs/1610.00420


The mass of the black hole in RE J1034+396

Authors: Czerny, B.; You, B.; Kurcz, A.; Średzińska, J.; Hryniewicz, K.; Nikołajuk, M.; Krupa, M.; Wang, J.-M.; Hu, C.; Życki, P. T.

Journal: Astronomy & Astrophysics, 594, A102 (2016)

The black hole mass measurement in active galaxies is a challenge, particularly in sources where the reverberation method cannot be applied. We aim to determine the black hole mass in a very special object, RE J1034+396, one of the two AGN with QPO oscillations detected in X-rays, and a single bright AGN with optical band totally dominated by starlight. We fit the stellar content using the code starlight, and the broad band disk contribution to optical/UV/X-ray emission is modeled with optxagnf. We also determine the black hole mass using several other independent methods. Various methods give contradictory results. Most measurements of the blacc hole mass are in the range 1.e6-1.e7 Msun, and the measurements based on dynamics give higher values than measurements based on Hbeta and Mg II emission lines.

Full paper: http://arxiv.org/abs/1601.02498